Calculates the density dependent rate of egg production \(R_i\) (units
1/year) for each species. This is the flux entering the smallest size class
of each species. The density dependent rate is the density independent
rate obtained with getRDI()
after it has been put through the
density dependence function. This is the Beverton-Holt function
BevertonHoltRDD()
by default, but this can be changed. See
setReproduction()
for more details.
Usage
getRDD(
params,
n = initialN(params),
n_pp = initialNResource(params),
n_other = initialNOther(params),
t = 0,
rdi = getRDI(params, n = n, n_pp = n_pp, n_other = n_other, t = t),
...
)
Arguments
- params
A MizerParams object
- n
A matrix of species abundances (species x size).
- n_pp
A vector of the resource abundance by size
- n_other
A list of abundances for other dynamical components of the ecosystem
- t
The time for which to do the calculation (Not used by standard mizer rate functions but useful for extensions with time-dependent parameters.)
- rdi
A vector of density-independent reproduction rates for each species. If not specified, rdi is calculated internally using
getRDI()
.- ...
Unused
See also
Other rate functions:
getEGrowth()
,
getEReproAndGrowth()
,
getERepro()
,
getEncounter()
,
getFMortGear()
,
getFMort()
,
getFeedingLevel()
,
getMort()
,
getPredMort()
,
getPredRate()
,
getRDI()
,
getRates()
,
getResourceMort()
Examples
# \donttest{
params <- NS_params
# Project with constant fishing effort for all gears for 20 time steps
sim <- project(params, t_max = 20, effort = 0.5)
# Get the rate at a particular time step
getRDD(params, n = N(sim)[15, , ], n_pp = NResource(sim)[15, ], t = 15)
#> Sprat Sandeel N.pout Herring Dab Whiting
#> 7.273519e+11 4.098406e+11 9.405199e+12 1.103948e+12 1.115039e+10 5.394960e+11
#> Sole Gurnard Plaice Haddock Cod Saithe
#> 3.855063e+10 7.536194e+11 2.654321e+13 1.733106e+12 8.259403e+09 1.117118e+11
# }